Indoor Positioning System using Near Real-time R adio Maps in Fingerprinting based on Bluetooth L ow Energy

Presenter: Kuei-Ping Chang

Advisor: Kai-Wei Chiang

Introduction

Wireless Communication Technology

	Wi-Fi	ZigBee	Bluetooth	BLE
Power consumption	High	Very Low	Low	Very Low
Deployment	Depending on existing APs	Easy	Easy	Easy
Supported by smartphones	Yes	No	Yes	Yes
Cost	High	Low	Medium	Low

ZU1 774

Fingerprinting

· Off-line phase

Radio maps

Motivation and Purpose

· Time consuming

The environment presented by radio maps is different from the on-lin e phase

· Shorter calibration beforehand

· Less efforts to construct and maintain radio maps

Methodology

Flow chart

- Main stations
 - Radio map
 - Kalman filter → estimate glob al RSSI corrections

Methodology

2017/4/6

Radio Maps Production-IDW

Inverse Distance Weighting (IDW)

$$RSSI_{esti} = \sum_{j=1}^{N} w_{j}RSSI_{j}$$

$$w_{j} = \frac{d_{j}^{-u}}{\sum_{j=1}^{N} d_{j}^{-u}} \cdot d_{j} = \sqrt{(x_{j} - x)^{2} + (y_{j} - y)^{2}}$$

- j = 1, ..., N, N is the number of main stations
- (x_j, y_j) : the coordinate of j-th main station
- *u* : exponent parameter

Global RSSI Correction (Δ_a)

• 5 main stations; 4 beacons

•
$$\mathbf{M} = \begin{bmatrix} \overline{RSSI}_{11} & \cdots & \overline{RSSI}_{14} \\ \vdots & \ddots & \vdots \\ \overline{RSSI}_{51} & \cdots & \overline{RSSI}_{54} \end{bmatrix}$$
 \rightarrow used to produce radio maps

• $\mathbf{MS} = \begin{bmatrix} RSSI_{11} & \cdots & RSSI_{14} \\ \vdots & \ddots & \vdots \\ RSSI_{51} & \cdots & RSSI_{54} \end{bmatrix}_{5*4}$ \rightarrow used to update KF

• $\Delta = \mathbf{MS} - \mathbf{M} = \begin{bmatrix} \Delta_{11} & \cdots & \Delta_{14} \\ \vdots & \ddots & \vdots \\ \Delta_{51} & \cdots & \Delta_{54} \end{bmatrix}_{5*4}$

• $\Delta_{1} = \frac{\Delta_{11}}{|RSSI_{11}|} + \frac{\Delta_{21}}{|RSSI_{21}|} + \cdots + \frac{1}{|RSSI_{21}|}$

•
$$\Delta = MS - M = \begin{bmatrix} \Delta_{11} & \cdots & \Delta_{14} \\ \vdots & \ddots & \vdots \\ \Delta_{51} & \cdots & \Delta_{54} \end{bmatrix}_{5*4}^{7}$$

•
$$\Delta_{\boldsymbol{g}} = \begin{bmatrix} \Delta_1 \\ \Delta_2 \\ \vdots \\ \Delta_4 \end{bmatrix}_{4*1}$$

$$\Delta_{1} = \frac{\frac{\Delta_{11}}{|RSSI_{11}|} + \frac{\Delta_{21}}{|RSSI_{21}|} + \dots + \frac{\Delta_{51}}{|RSSI_{51}|}}{S_{1}}$$

$$S_{1} = \frac{1}{|RSSI_{11}|} + \frac{1}{|RSSI_{21}|} + \dots + \frac{1}{|RSSI_{51}|}$$

67

67

Fingerprinting algorithm-EWKNN

Enhanced Weighted K-nearest Neighbor (EWKNN)

 Ω

67

_70

1.5	1	8	
10	4.2	5.5	
13	0	α	1

Experiments and Analysis

Devices

Beacon

Power: 10 metermax

Main station (USBeacon)

Scanning frequency: 1 Hz

User (iPhone 5s)

Scanning frequency: 1 Hz

Experimental scenarios

- Exponent parameter in radio maps & orientation correction
- Placement and number of main stations
- Updating frequency of KF

Exponent parameter and orientation correction

Case

Interpolation Ar

Maximum
Interpolation Ar

Main Station Closed to Beac

2017/4/6

Placement - 4 Main Stations

Placement - 5 Main Stations

Maximum Interpolation Area

Main Station Closed to Beacon

Number of Main Station

4 main stations

5 main stations

Updating frequency of KF

		5 m	nins	9 mins		10 mins		12 mins	
		P1	P2	P1	P2	P1	P2	P1	P2
	Mean	1.52	0.633	1.534	0.979	1.540	0.702	1.628	0.952
,	Std	0.659	0.638	0.739	0.732	0.734	0.673	0.731	0.650
′/	RMSE	1.657	0.898	1.703	1.222	1.706	0.972	1.784	1.153

Performance of the Proposed System

		P1	P2	Р3	
]	Original RSSI (m)	2.0521	2.4329	2.8929	
	Proposed system (m)	1.6569	0.8983	1.6199	
	'	19.3%	63.1%	44.0%	

2017/4/6

Conclusions and Future works

Conclusions

- · Radio maps
 - updated every 30 minutes
 - Exponent parameter (u): 3
- Main stations
 - Let one main station near to a beacon
 - One main station is in the center
- · Kalman filter
 - Updated every 5 mins

Conclusions

· Positioning accuracy: 0.9 to 1.6 meters

Construction and maintenance of radio maps are finished automatical ly

 Provide stable indoor positioning accuracy with several low-cost beac ons and main stations

Future works

· Perform in different circumstances for evaluating its repeatability

· The effect of human on BLE signals

· Wi-Fi beacon for real-time positioning system

· Combine with PDR